Showing posts with label Problems on Area - Solved Examples(Set 4). Show all posts
Showing posts with label Problems on Area - Solved Examples(Set 4). Show all posts

Thursday, 10 August 2017

Problems on Area - Solved Examples(Set 4)


Problems on Area - Solved Examples(Set 4)
16. The ratio between the length and the breadth of a rectangular park is 3:2. If a man cycling along the boundary of the park at the speed of 12 km/hr completes one round in 8minutes, then what is the area of the park (in sq. m)?
A. 142000B. 112800
C. 142500D. 153600

answer with explanation
Answer: Option D
Explanation:
Solution 1

Let length =3x km,
breadth =2x km

Distance travelled by the man at the speed of 12 km/hr in 8 minutes =2(3x+2x)=10x

Therefore,12×860=10xx=425 km=160 m

Area =3x×2x=6x2
=6×1602=153600 m2

Solution 2

l:b=3:2(1)

Perimeter of the rectangular park
= Distance travelled by the man at the speed of 12 km/hr in 8 minutes
= speed × time =12×860  (∵ 8 minute = 860 hour)
85 km =85×1000 m =1600 m

Perimeter =2(l+b)

Therefore,
2(l+b)=1600l+b=16002=800 m(2)

From (1) and (2)
l=800×35=480 mb=800×25=320 m(Or b=800480=320 m)

Area =lb=480×320=153600 m2
17. What is the percentage increase in the area of a rectangle, if each of its sides is increased by 20%?
A. 45%B. 44%
C. 40%D. 42%

answer with explanation
Answer: Option B
Explanation:
Solution 1

Change in area
=(20+20+20×20100)%=44%

i.e., area is increased by 44%

(This formula is explained in detail here)

Solution 2

Let original length =10
original breadth =10

Then, original area
=10×10=100

Length is increased by 20%
⇒ New length =10+2=12  (∵ 2 is 20% of 10)

Breadth is increased by 20%
⇒ New breadth =10+2=12

New area =12×12=144

Increase in area
= New area - Original area
=144100=44

Percentage increase in area
=increase in areaoriginal area×100=44100×100=44%

Solution 3

Let original length =l
original breadth =b

Then original area =lb

Length is increased by 20%
⇒ New length =l×120100=1.2l

Breadth is increased by 20%
⇒ New breadth =b×120100=1.2b

New area =1.2l×1.2b=1.44lb

Increase in area = new area - original area
=1.44lblb=0.44lb

Percentage increase in area
=increase in areaoriginal area×100=0.44lblb×100=44%
18. If the difference between the length and breadth of a rectangle is 23 m and its perimeter is 206 m, what is its area?
A. 2800 m2B. 2740 m2
C. 2520 m2D. 2200 m2

answer with explanation
Answer: Option C
Explanation:
Solution 1

lb=23(1)

perimeter =206
2(l+b)=206
l+b=103(2)

(1)+(2)2l=23+103=126l=1262=63 metre

Substituting the value of l in (1), we get
63b=23b=6323=40 metre

Area =lb=63×40=2520 m2

Solution 2

length = breadth +23. Therefore,
4× breadth +2×23=206 m
⇒ breadth =40 m

length =40+23=63 m

Area =63×40=2520 m2
19. The ratio between the perimeter and the breadth of a rectangle is 5:1. If the area of the rectangle is 216 sq. cm, what is the length of the rectangle?
A. 16 cmB. 18 cm
C. 14 cmD. 20 cm

answer with explanation
Answer: Option B
Explanation:
Solution 1

Given that 2(l+b)b=5
2l+2b=5b2l=3b
b=2l3

Also given that, area =216 cm2
lb=216 cm2

Substituting the value of b, we get,
l×2l3=216l2=3×2162l2=3×108=(3×3)×36l=3×6=18 cm

Solution 2

Let perimeter =5x cm
breadth =x cm
Then, length =5x2x2=3x2 cm

Area =216 cm23x2×x=2163x2=216×2x2=72×2=36×2×2x=6×2=12

length =3x2=3×122=18 cm
20. What is the least number of square tiles required to pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?
A. 814B. 802
C. 836D. 900

answer with explanation
Answer: Option A
Explanation:
l=15 m 17 cm =1517 cm
b=9 m 2 cm =902 cm
Area =1517×902 cm2

Now we need to find out HCF(Highest Common Factor) of 1517 and 902
Let's find out the HCF using long division method for quicker results.


Hence, HCF of 1517 and 902 =41

Therefore, side length of largest square tile =41 cm

Area of each square tile =41×41 cm2

Number of tiles required