Showing posts with label Problems on Area - Solved Examples(Set 3). Show all posts
Showing posts with label Problems on Area - Solved Examples(Set 3). Show all posts

Thursday, 10 August 2017

Problems on Area - Solved Examples(Set 3)


Problems on Area - Solved Examples(Set 3)
11. The length of a rectangle is twice its breadth. If its length is decreased by 5 cm and breadth is increased by 5 cm, the area of the rectangle is increased by 75 sq.cm. What is the length of the rectangle?
A. 18 cmB. 16 cm
C. 40 cmD. 20 cm

answer with explanation
Answer: Option C
Explanation:
Let breadth =x cm
Then, length =2x cm
Area =x×2x=2x2 sq.cm.

New length =(2x5) cm
New breadth =(x+5) cm
New area =(2x5)(x+5) sq.cm.

Given that, new area = initial area +75 sq.cm.
(2x5)(x+5)=2x2+752x2+10x5x25=2x2+755x25=755x=75+25=100x=1005=20 cm
Length =2x=2×20=40 cm
12. If a square and a rhombus stand on the same base, then what is the ratio of the areas of the square and the rhombus?
A. equal to 12B. equal to 34
C. greater than 1D. equal to 1

answer with explanation
Answer: Option C
Explanation:
If a square and a rhombus lie on the same base, area of the square will be greater than area of the rhombus (In the special case when each angle of the rhombus is 90°, rhombus is also a square and therefore areas will be equal)


Hence greater than 1 is the more suitable choice from the given list

Note : Proof

Proof - area of square and a rhombus stand on the same base
Consider a square and rhombus standing on the same base a. All the sides of a square are of equal length. Similarly all the sides of a rhombus are also of equal length.

Since both the square and rhombus stands on the same base a,
length of each side of the square =a
length of each side of the rhombus =a

Area of the square =a2(1)

From the diagram, sinθ=ha
h=asinθ

Area of the rhombus
=ah=a×asinθ=a2sinθ  (2)

From (1) and (2)

area of the squarearea of the rhombus=a2a2sinθ=1sinθ

Since 0°<θ<90°,0<sinθ<1.
Therefore, area of the square is greater than that of rhombus, provided both stands on same base.

(Note that, when each angle of the rhombus is 90°, rhombus is also a square (can be considered as special case) and in that case, areas will be equal.
13. The breadth of a rectangular field is 60% of its length. If the perimeter of the field is 800 m, find out the area of the field.
A. 37500 m2B. 30500 m2
C. 32500 m2D. 40000 m2

answer with explanation
Answer: Option A
Explanation:
Solution 1

Given that breadth of the rectangular field is 60% of its length.
b=60l100=3l5

perimeter of the field =800 m
2(l+b)=8002(l+3l5)=800l+3l5=4008l5=400l5=50l=5×50=250 m

b=3l5=3×2505=3×50=150 m

Area =lb=250×150=37500 m2

Solution 2

breadth =60% of length

perimeter =800 m
⇒ 2(length + breadth) =800
⇒ 2(length + 60% of length) =800
⇒ 2(160% of length) =800
⇒ 160% of length =400
⇒ length =400×100160=250 m

breadth =250×60100=150 m

Area =250×150=37500 m2
14. A room 5 m 44 cm long and 3 m 74 cm broad needs to be paved with square tiles. What will be the least number of square tiles required to cover the floor?
A. 176B. 124
C. 224D. 186

answer with explanation
Answer: Option A
Explanation:
length =5 m 44 cm =544 cm
breadth =3 m 74 cm =374 cm

Area =544×374 cm2

Now we need to find out HCF(Highest Common Factor) of 544 and 374.
Let's find out the HCF using long division method for quicker results.
Hence, HCF of 544 and 374 =34

Therefore, side length of largest square tile =34 cm

Area of each square tile =34×34 cm2

Number of tiles required
=544×37434×34=16×11=176
15. The length of a rectangular plot is 20 metres more than its breadth. If the cost of fencing the plot @Rs.26.50 per metre is Rs.5300, what is the length of the plot in metres?
A. 60 mB. 100 m
C. 75 mD. 50 m

answer with explanation
Answer: Option A
Explanation:
Solution 1

Length of the fence =530026.50=200 m

⇒ 2(length + breadth)=200 m
⇒ 2(breadth + 20 + breadth)=200 m  (∵ length = breadth+20)
⇒ breadth + 20 + breadth =100 m
⇒ breadth =40 m

length =40+20=60 m

Solution 2

Length of the plot is 20 metres more than its breadth.
Hence, let's take the length as l metre and breadth as (l20) metre.

Length of the fence = perimeter
=2(length + breadth)
=2[l+(l20)]
=2(2l20) metre

Cost per meter = Rs.26.50
Total cost =2(2l20)×26.50

Total cost is given as Rs.5300