Showing posts with label Important Formulas - Geometric Shapes and Solids. Show all posts
Showing posts with label Important Formulas - Geometric Shapes and Solids. Show all posts

Thursday, 10 August 2017

Important Formulas - Geometric Shapes and Solids


Important Formulas - Geometric Shapes and Solids
Geometric Shape
Description
Formulas
Rectangle
Rectangle
l= Length
b= Breadth
d= Length of diagonal
Area =lb
Perimeter =2(l+b)
d=l2+b2
Square
Square
a= Length of a side
d= Length of diagonal
Area = a2=12d2
Perimeter =4a
d = 2a
Parallelogram
Parallelogram
b and c are sides
b= base
h= height
Area =bh
Perimeter =2(b+c)
Rhombus
Rhombus
a= length of each side
b= base
h= height
d1, d2 are the diagonals
Area =bh
(Formula 1 for area)
Area =12d1d2
(Formula 2 for area)
Perimeter =4a
Triangle
Triangle
a,b and c are sides
b= base
h= height
Area = 12bh
(Formula 1 for area)

Area =s(sa)(sb)(sc)
where s is the semiperimeter
=a+b+c2
(Formula 2 for area - Heron's formula)

Perimeter =a+b+c

Radius of incircle of a triangle
of area A =As
where s is the semiperimeter
=a+b+c2
Equilateral Triangle
Equilateral Triangle
a= side
Area =34a2
Perimeter =3a
Radius of incircle of an equilateral triangle of side a =a23
Radius of circumcircle of an equilateral triangle of side a =a3
Trapezium (Trapezoid)
Trapezium (Trapezoid)
Base a is parallel to base b
h= height
Area =12(a+b)h
Circle
circle
r= radius
d= diameter
d=2r
Area = Ï€r2=14Ï€d2
Circumference =2Ï€r=Ï€d
Circumferenced=Ï€
Sector of Circle
r= radius
θ = central angle
Area, A =
{θ360πr2(if angle is in degrees)12r2θ(if angle is in radians)

Arc Length, s=
{θ180πr(if angle is in degrees)rθ(if angle is in radians)

In the radian system for angular measurement,
2Ï€ radians =360°
⇒ 1 radian =180°Ï€
⇒ 1°=Ï€180 radians

Hence,
Angle in Degrees
= Angle in Radians × 180°Ï€

Angle in Radians
= Angle in Degrees נπ180°
Ellipse
Ellipse
Major axis length =2a
Minor axis length =2b
Area =Ï€ab
Perimeter 2Ï€a2+b22
Rectangular Solid
Rectangular Solid
l= length
w= width
h= height
Total Surface Area
=2lw+2wh+2hl=2(lw+wh+hl)
Volume =lwh
Cube
Cube
s= edge
Total Surface Area =6s2
Volume =s3
Right Circular Cylinder
Right Circular Cylinder
h= height
r= radius of base
Lateral Surface Area
=(2Ï€r)h
Total Surface Area
=(2Ï€r)h+2(Ï€r2)
Volume =(Ï€r2)h
Pyramid
Pyramid
h = height
B = area of the base
Total Surface Area =B + Sum of the areas of the triangular sides
Volume =13Bh
Right Circular Cone
Right Circular Cone
h= height
r= radius of base
Lateral Surface Area
=Ï€rr2+h2=Ï€rs

where s is the slant height
=r2+h2
Total Surface Area
=Ï€rr2+h2+Ï€r2=Ï€rs+Ï€r2
Sphere
Sphere
r= radius
d = diameter
d=2r
Surface Area =4Ï€r2=Ï€d2
Volume =43Ï€r3=16Ï€d3