Thursday, 10 August 2017

Problems on Area - Solved Examples(Set 6)


Problems on Area - Solved Examples(Set 6)
26. Two diagonals of a rhombus are 72 cm and 30 cm respectively. What is its perimeter?
A. 136 cmB. 156 cm
C. 144 cmD. 121 cm

answer with explanation
Answer: Option B
Explanation:
Diagram
Remember the following two properties of a rhombus which will be useful in solving this question
1. All the sides of a rhombus are congruent.
2. The diagonals of a rhombus bisect each other at right angles.


Let the diagonals be PR and SQ
Let PR =72 cm, SQ =30 cm

PO = OR = 722=36 cm

SO = OQ = 302=15 cm

PQ = QR = RS = SP
=362+152=1296+225=1521=39 cm

perimeter =4×39=156 cm
27. The base of a parallelogram is (p+4), altitude to the base is (p3) and the area is (p24),find out its actual area.
A. 40 sq. unitsB. 54 sq. units
C. 36 sq. unitsD. 60 sq. units

answer with explanation
Answer: Option D
Explanation:
Diagram
Area of a parallelogram, A =bh
where b is the base and h is the height of the parallelogram


Hence, we have
p24=(p+4)(p3)p24=p2+p124=p12p=124=8

Hence, actual area =(p24)
=824=644=60 sq. units
28. A circle is inscribed in an equilateral triangle of side 24 cm, touching its sides. What is the area of the remaining portion of the triangle?
A. 144348π cm2B. 121336π cm2
C. 144336π cm2D. 121348π cm2

answer with explanation
Answer: Option A
Explanation:
Solution 1

Diagram
Area of an equilateral triangle =34a2
where a is length of one side of the equilateral triangle

Area of the equilateral Δ ABC
=34a2=34×242=1443 cm2  (1)
Area of a triangle =12bh
where b is the base and h is the height of the triangle

Let r = radius of the inscribed circle. Then,
Area of Δ ABC
= Area of Δ OBC + Area of Δ OCA + area of Δ OAB
=(12×r×BC)+(12×r×CA) +(12×r×AB)
=12×r×(BC + CA + AB)=12×r×(24+24+24)=12×r×72=36r cm2  (2)

From (1) and (2),
1443=36rr=144336=43  (3)
Area of a circle =πr2
where r = radius of the circle

From (3), area of the inscribed circle
=πr2=π(43)2=48π  (4)

Hence, area of the remaining portion of the triangle
= Area of Δ ABC – Area of inscribed circle
=144348π cm2

Solution 2
Radius of incircle of an equilateral triangle of side a
=a23


Radius of the circle inscribed
=2423=123 cm

Area of the circle inscribed
=π(123)2=π×1443=48π cm2

Area of the equilateral triangle
=34a2=34×242=1443 cm2

Area of the remaining portion of the triangle
= Area of the equilateral triangle – Area of inscribed circle
=144348π cm2
29. A rectangular plot measuring 90 metres by 50 metres needs to be enclosed by wire fencing such that poles of the fence will be kept 5 metres apart. How many poles will be needed?
A. 30B. 44
C. 56D. 60

answer with explanation
Answer: Option C
Explanation:
Perimeter of a rectangle =2(l+b)
where l is the length and b is the breadth of the rectangle.


Length of the wire fencing
= perimeter =2(90+50)=280 metre

Two poles will be kept 5 metres apart. The poles will be placed along the perimeter of the rectangular plot, not in a single straight line which is very important.

Hence, number of poles required
=2805=56
30. If the diagonals of a rhombus are 24 cm and 10 cm, what will be its perimeter?
A. 42 cmB. 64 cm
C. 56 cmD. 52 cm

answer with explanation
Answer: Option D
Explanation:
Diagram

Let the diagonals be PR and SQ.
Let PR =24 cm and SQ =10 cm

PO = OR =242=12 cm
SO = OQ =102=5 cm

PQ = QR = RS = SP
=122+52=144+25=169=13 cm

perimeter =4×13=52 cm
31. What will be the length of the longest rod which can be placed in a box of 80 cm length,40 cm breadth and 60 cm height?
A. 11600 cmB. 14400 cm
C. 10000 cmD. 12040 cm

answer with explanation
Answer: Option A
Explanation:
Solution 1

Length of the longest rod that can be placed in a box
of length l, breadth b and height h

=l2+b2+h2


Therefore, length of the longest rod
=802+402+602=11600 cm
Solution 2
Diagram
The longest road which can fit into the box will have one end at A and other end at G (or any other similar diagonal).
Hence the length of the longest rod = AG

Initially let's find out AC. Consider the right angled triangle ABC
Diagram
AC2 = AB2 + BC2
 AC2 =402+802=1600+6400=8000
AC = 8000 cm

Consider the right angled triangle ACG
Diagram
AG2 = AC2 + CG2
=(8000)2+602=8000+3600=11600

⇒ AG = 11600 cm
⇒ Length of the longest rod =11600 c
m

No comments:

Post a Comment